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For random walks on two- and three-dimensional cubic lattices, numerical 
results are obtained for the static, D(cc), and time-dependent diffusion coef- 
ficient D(t), as well as for the velocity autocorrelation function (VACF). The 
results cover all times and include linear and quadratic terms in the density 
expansions. Within the context of kinetic theory this is the only model in two 
and three dimensions for which the time-dependent transport properties have 
been calculated explicitly, including the long-time tails. 
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1. I N T R O D U C T I O N  

Random walks (RW) on disordered lattices are in many respects very 
similar to a Lorentz gas. (~) There exists a variety of problems that can be 
modeled by random walks on disordered lattices, such as dynamic per- 
colation, ants-in-a-labyrinth and termite models, random resistor networks, 
and networks with normal and superelastic springs. Such problems have 
received much attention recently. The short-time behavior of the 
RWmodels is essentially described by an Enskog-type theory; at inter- 
mediate time scales the models show a strong "cage effect," in the sense 
that the velocity autocorrelation function (VACF) is negative for all 
positive times; at long times the RW models exhibit long-time tails, namely 
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VACF~t -1  d/2, which are essentially described by "repeated ring 
collisions."(1) 

Because of these similarities it is of great interest to study the 
RW models on random lattices. The kinetic theory for the deterministic 
Lorentz gas becomes extremely complicated if one attempts to go beyond 
the contributions linear in the concentration e of scatterers or into inter- 
mediate-time regimes. Even the long-time tails for the 2D and 3D Lorentz 
gases have never been calculated to 0(c2). Fortunately, the calculations for 
the RW models are considerably simpler, and through a combination of 
analytic and numerical methods we have obtained the static and time- 
dependent diffusion coefficients and VACF in two and three dimensions for 
all times, exact to 0(c2). As far as we know, this is the only kinetic theory 
model in dimensions higher than one for which exact calculations have 
been performed in these time and density regimes. 

As already indicated, kinetic theory methods for obtaining density 
expansions (1) of static and frequency-dependent transport properties can be 
applied succesfully to lattice models with quenched disorder, at least for 
densities not too close to a percolation threshold. This is shown by the 
results for the diffusion coefficient and the velocity autocorrelation function 
(VACF) in 2D lattice models with site (2'3) or bond (4) disorder. In this paper 
we will consider 2D and 3D models with bond disorder. 

For the case of diluted randomness, where only a small fraction c of 
bonds or sites have been replaced at random by impurities, a kinetic theory 
has been developed for describing diffusion phenomena on random 
lattices. (5) Some properties of these models have been studied by other 
methods, such as the effective medium approximation (EMA), (6-9) renor- 
realization group methods, (1~ and the single-impurity approximation, m'~2) 
which is exact to linear order in the impurity concentration. For bond 
models EMA is also exact to O(c), but for site models it is not. 

However, until now, quantitative results covering the whole time 
interval from short times via intermediate times to long times have only 
been available for the velocity autocorrelation function to linear order in 
the impurity concentration c for this and related hopping models. (2'4) 

In this paper we present numerical results for the 2D square and 3D 
cubic lattice bond models for both the VACF and the time-dependent 
diffusion coefficient, now including terms proportional to c 2. We also give 
the static diffusion coefficient for three dimensions up to 0(c2). For the 
square lattice it was already given in Ref. 5. 

In Section 2 we quote the results obtained in Ref. 5, including the 
expressions for the computation of the various quantities. In Section 3 we 
discuss the method used to calculate the lattice Green's functions for 
arbitrary lattice site. Further, in Section 4 we present the calculations per- 
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formed for the static diffusion coefficient in three dimensions. In Section 5 
two methods for performing the Laplace inversion are discussed. Section 6 
contains some remarks concerning the calculation of the time-dependent 
diffusion coefficient. Finally, in Section 7 the results for the VACF and the 
time-dependent diffusion coefficient are presented and discussed. 

2. D E N S I T Y  E X P A N S I O N S  

Here we confine ourselves to an outline of the theory developed by 
Ernst and Van Velthoven,(5) containing the expressions used in that paper. 

The basic quantity studied in Ref. 5 is the probability distribution 
P.(t) for a displacement n in a time t in a hopping model on a d-dimen- 
sional cubic lattice with unit lattice distance. Here, p,(t) is an average over 
the quenched disorder. The most important quantity to be derived from 
p,(t) is the mean square displacement {n~.)(t) and the related time- 
dependent diffusion coefficient 

~ "' d~ ~o(~) (2.1)  D(t) = ?5 {n~)(t) = Jo 

where D(oo)=D is the static diffusion coefficient and q)(t) is the velocity 
autocorrelation function (VACF) 

1 0 2 
q)(t) = (v~(O) vx(t) ) = ~ - ~  (n~)(t) (2.2) 

The model considered is that of an unbiased random walker (blind 
ant) that makes nearest neighbor hops and is hindered by the presence of 
randomly distributed bond impurities (scatterers). The lattice is a d-dimen- 
sional cubic lattice with N = L  a sites and periodic boundary conditions. 
The sites are labeled by the vectors n - ( n  X, ny,..., nj) and the bonds by 
(n, c~), where ~ runs from 1 to d. A fraction c of bonds in the host lattice 
(having "conductivity" a0 = 1 ) is replaced by impurity bonds with "conduc- 
tivity" a, which ranges from 0 ("hard scatterers"; percolation problem) to 
infinity ("superconducting" bonds, termite problem(14)). 

For this problem, the continuous-time random walk is described by 
the probability distribution p,(t), which satisfies the master equation 

1).=~ [W~p,,+~ q- W~_e~ p . . . .  

(2.3) 
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with c~ = x, y ..... d; W~ is the random variable assigned to the bond (n, ~): 

W~ = 1___ (1 - bc~) (2.4) 
z a  

with b - - -1 -  a, and c] = 1 with probability c and c.-~- 0 with probability 
1 -  c. The % is the unit vector in the positive c~ direction, and s is the 
coordinate representation of the linear master operator L. 

It is shown that the probability distribution p,(t) obeys the symmetry 
relation p.(t, c, o-)= p.(at, 1-c, 1/o-), from which follows, using (2.1) and 
(2.2), 

D(c, ~r) = aO(1 - c, l /a) (2.5) 

for the static diffusion coefficient, and 

q~(t, c, a) = azq~(at, 1 - c, I/a) (2.6) 

The quantity of interest is the generating function of the moments of 
displacement, whose Fourier-Laplace transform is given by 

1 
F ( q , z ) = ~ , ~  { e x p [ i q ( n - m ) ] } ( f i z ( n l m ) ) - = ( ( z + L )  ~>qq (2.7) 

Here q is a reciprocal lattice vector in the first BriUouin zone (1BZ). The 
propagator/~=(nlm)--- [(z + s  ~].,, is the Laplace transform ofp(ntl  m0), 
the conditional probability distribution. Its average is the analogue of the 
Van Hove self-correlation function Gs(r, t) in the theory of fluids. 

With the help of (2.4) and (2.3), L can be decomposed into a part 
referring to a uniform lattice and a perturbation describing the influence of 
the impurities. In this manner, a density expansion is obtained for the 
response function F(q, z). The propagator of the uniform lattice is given by 

1 
g(q) = - -  (2.8) 

z + co(q) 

where co(q) is defined as 

1 
co(q) = ~ (1 - c o s  q~) (2.9) 

A convenient definition in the course of our calculations is 

G~(n, z)=-fqexp(-iqn) [1-exp(-iq~)J[1-exp(iq~)]z + co(q) (2.10) 
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Note that f [ e x p ( - i q n ) ] / ( z  + co) is the probability for a displacement n on 
a uniform lattice, where we used the short-hand notation 

. . ._~N-'  ~ . . . - ~  (2~) -~  .-. d'~q -.- (2.11) 
qE1BZ --Tr --n 

Further, a T-matrix resummation is carried out to account for successive 
visits of the random walker to the same impurity bond. The single impurity 
T-matrix is then introduced as 

r ( z )  = ~  z~o [- 2d 
b 1 

2d  1 - b J ( z )  
(2.12) 

with 

1 fq co(q) (2.13) 
J(~)-=9 z + co(q) 

The final quantity to be defined is 

R~z(n, z) = T(z )  G~/j(n, z) (2.14) 

Using these ingredients, it is possible to write down the response 
function. Here we are only interested in the mean square displacement 
(n~),  diffusion coefficient D ( t ) ,  and VACF (p(t). It follows from (2.2) that 
the Laplace transform r  of the VACF is given by 

1 Z 2 ( n 2 ) ( Z  ) = 1 ~2 q =0  - z2-~-25~2F(q,z) (2.15) 

The expression for ~(z), containing terms upto second order in the 
impurity concentration, obtained by Ernst and Van Velthoven (5) is 

1 { 
q~(z) = ~ -  e T ( z )  - c2T(z )  - 2 d T ( z )  J ( z )  

3 Rx~(n, z) 
+ 4 d 2 T ( ~ )  2 f I (z)-  J(z) 2] + E 1--~xx(;,,-~) 

n~O 

R L ( . ,  z) 
+ (d -  1) ~ l - R2v(n, z)J + ~ (2.16) 

with 

I = - J +  z dJ /dz  = (l/d) f qco2/(z + co) 2 
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The O(c) term accounts for all possible visits of the random walker to a 
single impurity, the O(c 2) terms for all those to two different impurities. 
The last summation includes the n = 0  term; Eq. (4.2) of Ref. 5 contains a 
misprint at this point. 

The dependence on the impurity hopping rate a = 1 -  b occurs only 
through T, (2.12). For the special case of blocked bonds (bond 
percolation), where b = 1, the coefficient of the c z term in (2.16) can be 
simplified further. With the help of the relations I =  J +  z dJ/dz and 
2dT(1 - J ) =  1 we find for b = 1 

- 2 d T J +  4d2T2(I - j2)  = 4zd2T 2 dJ/dz (2.17) 

This relation can also be used as a test on the numerical accuracy. 

3. A N A L Y S I S  OF  T H E  L A T T I C E  F U N C T I O N S  

In the sequel we study the behavior of Rxx and Rxy as functions of the 
Laplace variable z and the lattice vector n. In fact, as we conclude from 
(2.14), we need to calculate the quantities G~e(n, z) for general z. As we 
observe from (2.10), we can write G~(n, z), following Ref. 5, as 

G ~ ( n , z ) = ~ ( n , z ) - ~ ( n + % , z ) - ~ ( n - e ~ , z ) + ~ ( n + % - e ~ , z )  (3.1) 

with 

/~(n, z) ---/~(n, z) = fq eXp(z + -co(q)iqn) (3.2) 

the Laplace-transformed probability of a displacement n on a uniform 
lattice. We will omit the subscript d unless the validity of the expressions is 
restricted to the specific choice of d, in fact being 2 or 3 in this paper. 

By multiplying the integrand on the rhs of (3.2) with z +  co(q), it is 
straightforward to derive the recursion relations given below (see 
Morita~15)). For the square lattice we have [write n = (/, m)] 

4(1 + z)/~2(l, m, z )=  46lo 6too + fi2(l-- 1, m, z ) +  fi2(l + 1, m, z) 

+ lJ2(l, m -- 1, z) + fi~(l, m + 1, z) (3.3a) 

and for the simple cubic lattice [write n = (/, m, n)] 

6(1 + z)/~3(/, m, n, z) = 66t06m06,O +/~3( / -  1, m, n, z) +/~3(/+ 1, m, n, z) 

+/33(1 , m -- 1, n, z) +/33(/, m + 1, n, z) 

+/33(1, m, n -- 1, z) +/~3(I, m, n + 1, z) (3.3b) 
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These relations can also be regarded as the defining equations for the 
/~(n, z). Together with the invariance of/~2(/, m, z) and/~3(/, m, n, z) under 
permutation of the indices l, m, n, and reflection of each index with respect 
to its origin, it is possible to derive symmetry relations for these/~(n, z), 
which, as a consequence, only have to be calculated for a restricted region 
of n-space. The symmetries of the/~'s induce, of course, symmetries in the 
G~ and the R~p, which can be used to check the numerical code. 

The scheme for computing the /~(n, z) is described in detail in the 
Appendix; here, we present an outline. First we consider the 2D square lat- 
tice. The calculation requires the evaluation of complete elliptic integrals of 
the first and second kind. These give, in the right combinations, the 
/~(0, 0, z) and/~2(1, 1, z). From these two quantities, the whole diagonal 
/~2(l, l, z) is calculated using an additional recurrence relation discussed in 
the Appendix. Next, the 2D recurrence relations (3.3a) are manipulated in 
such a way that they generate the/~2(/, m, z) for general l and m. Further, it 
is shown in the Appendix that we can calculate the whole 3D lattice from 
the knowledge of the data on a plane. The data on the n = 0 plane follow 
from the 2D case as 

p3([, m, O, z) 

=rC~Jo J0 fo 1 

3 r~ 1 

= Jo 
3 ; o  2~ dw 13 2 

cos lu cos my du dv dw 
+ z - �89 u + cos v + cos w) 

fo f-o 3 cos lu cos mv du dv 
(1 + z - ~  cos w ) -  �89 u + c o s  v) 

( 3 1 ) 
l, m, ~ z + ~  (1 - c o s  w) (3.4) 

Note that/~3(0, 0, 0, z) is the simple cubic lattice Green's function. Finally, 
making use of (3.3b), we generate the /~3(/, m, n, z) for arbitrary lattice 
vector n. 

4. S T A T I C  D I F F U S I O N  C O E F F I C I E N T  

In the previous sections we gave expressions for the Laplace-transfor- 
med VACF: ~(z). The quantity that is calculated most easily following the 
lines of the previous sections is the static diffusion coefficient D - D ( o o )  
[cf. (2.1)], which follows by taking D =  qS(z=0). [Note that ~(&o) is the 
frequency-dependent diffusion coefficient.] Thus, in order to obtain values 
for the diffusion coefficient, we have to evaluate (2.16) for z = 0 .  From 

822/'48,/3 -4-21 
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(2.13) and (2.12) we easily find J(0) = 1/d and T(0) -- b / 2 ( d -  b). We write 
the diffusion coefficient as 

D(c) = Do(1 + ~1 c + 0~2 C2 -J- . . .  ) (4.1) 

where Do = 1/2d, the diffusion coefficient of the pure lattice, and 

db 
(3('1 = - d - b  

db [ d b ( 1 - b )  
~ = - d -  b ( d -  b) 2 

3 R x(n, o) o) 7 
+ E 1-Rxx(n ,  0) t - ( d - 1 ) Z  1 - - ; S Z -  (4.2) ~ o  . - Rxy(n, O)J 

For the explicit evaluation of the O(c 2) terms for the 2D square lattice we 
refer to Ref. 5. Here, we are concerned with the 3D simple cubic case. In 
order to calculate the diffusion coefficient for three dimensions, we need the 
R.~x and Rxy for z = 0, which involve the calculation of/~3(n , 0) for arbitrary 
lattice vector n. From (3.4) it is seen that this leads to the integration of the 
corresponding values of/~2(n, z) for z varying from 0 to 1. The problem 
that arises here is that the/~2(n, z) show logarithmic singularities near z = 0. 
These originate from the behavior of the complete elliptic integral of the 
first kind near argument unity. To improve numerical accuracy we subtract 
the singular term from the integrand, evaluate it analytically, and add the 
result to the regular part afterward. The resulting values for/~3(/, m, 0) are 
tabulated in Table I. The values we obtain for /03(0 , 0 , 0 ) ,  /~3(1, 0, 0), 
/~3(1, 1, 0), and/~3(1, 1, 1) are in agreement (for all decimals given) with 
those given by Montet (~6) and Watson. (17) 

Proceeding in this way, we are able to evaluate the lattice sums in 
(4.2) using (2.14), (3.1), and (3.3b), giving the diffusion coefficient to 
quadratic order in the impurity concentration c. Finally, we can use the 
symmetry relation (2.5) to obtain the diffusion coefficient for c near unity, 
which requires the same calculations, but now for a value of b given by 

1 1 - b  
b ' =  1 - a ' = l - - = l  

a 1 - b  1 - b  

which is negative. 
For later comparison of these results with the effective medium 

approximation we quote the relation from which the EMA values are 
calculated(6): 

( d -  1 ) 0 2 +  ( 2 - d - b + c d b )  ~0- 1 + b = 0  (4.3) 
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where ~9 = D(c)/Do = 2dD(c). The solution of this EMA equation for d =  2 
obeys the relation 

~(c) ~(1 - c ) = a  (4.4) 

following from the self-duality of the 2D square lattice bond problem. (~9) 
For c = 1/2 this relation provides the exact result $(1/2) = x ~ .  

Further, Golden and Papanicolaou (2~ calculated rigorous upper and 
lower bounds for the dielectric constant of a random mixture of dielectrics. 
These bounds also apply to the static diffusion coefficient studied here and 
are expressed as 

~M(1 - c, l /a )  <~ $(c, ~) ~ M(c, ~) (4.5) 

where [see Ref. 5, Eq. (4.12)] 

M(c, ~)= 1 
bcd 

d-b(1 -c) 

with ~ = D(c)/Do = 2dD(c) and a = 1 - b. 

(4.6) 

Table I. Laplace-Transformed Probabil i ty of Displacement,  or 
Green's Functions for the Simple Cubic Lattice: 

Values for n = 0  and z = 0  a 

m/! 0 1 2 3 4 
5 
4 0.08427163 
3 0.11228871 0.09539360 
2 0.16833102 0.13245105 0.10705577 
1 0.33114860 0.21558961 0.15313888 0.11713046 
0 1.51638606 0.51638606 0.25733588 0.16527076 0.12173317 

m/l 5 6 7 8 9 
10 
9 0.03749653 
8 0.04218216 0.03963500 
7 0.04820203 0.04489430 0.04186254 
6 0.05622468 0.05175681 0.04772922 0.04413563 
5 0,06744918 0.06108567 0.05548385 0.05061019 0.04638613 
4 0.07449474 0.06619578 0.05923929 0.05341530 0.04851774 
3 0.08190985 0.07125597 0.06278699 0.05597097 0.05040631 
2 0.08897732 0.07575721 0.06579001 0.05805805 0.05190865 
1 0.09442927 0.07898507 0.06784389 0.05944131 0.05288310 
0 0.09660640 0.08018811 0.06858197 0.05992815 0.05322168 

a/~ is symmetric under permutat ion of l, m, and n. For comparison with Montet  we also give 
33(1 , 1, 1 ) = 0.26147013. 
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It will be shown that these bounds, the EMA theory, and the density 
expansions are all in close agreement. 

5. VELOCITY AUTOCORRELATION FUNCTION 

The next problem we shall discuss in this paper is the calculation of 
the velocity autocorrelation function (VACF) and the time-dependent 
diffusion coefficient up to 0@2). 

The way to obtain these quantities from the results reported in 
Sections 2 and 3 is by performing the Laplace inversion of the Laplace- 
transformed VACF ~b(z) given by (2.16). 

One of the basic quantities that possesses the kind of singularities we 
have to deal with is J(z) given in (2.13). Obviously J(z) falls off as 1/z for 
Lzl ~ Go. As co(q) varies from 0 to 2, it is clear that J(z) shows a branch cut 
on the real axis from - 2  to 0. Subsequently we shall need the values of 
J(z) just below this branch cut. For  a discussion of the behavior of J(z) in 
this region of the complex z plane we refer to the Appendix. 

The Laplace inversion for a function f(z) is carried out by taking the 
integral 

1 f r+ioo 
- dz  eZ (z) (5.1) f ( t ) = 5 6  l ( f ( z ) ) - ~ n  / - i ~  

Apart from the constant term T(oo) in T(z), all terms in (2.16) decay suf- 
ficiently rapidly for [zL ~ oo so the contour can be closed in the left half of 
the complex z plane. For  the present, we assume that there are, outside the 
branch cut, no further poles present. This is certainly the case for b values 
greater than zero. (13) Now, the contour is equivalent to the contour that 
goes anticlockwise just below and just above the branch cut. The functions 
we have to invert are real functions of a complex argument, so they obey 
the relation f(x+iO)=f*(x-iO), where the asterisk means complex 
conjugation. Thus, we can write the Laplace inversion as 

1 fo dxeX'{f(x-iO)-f(x+iO)] 

1 [/ 
=- dxe-~"Im _ ( - x ) ]  

7~ 

where f ( -x )=- f ( -x - i0 ) .  Using this formula, we can calculate various 
inversions. Consider first T(z) in (2.16). The term T(z)-T(o~) falls off as 
1/[zl, while the constant T(oo)=  b/2d leads to (b/2d)6+(0. Thus, 
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b l r  2 
= ~ 6 + ( t ) + ~ - ~ J o  d X e - ~ ' - -  

bJs 

tl-bJI 2 
w h e r e  J ( - x )  = J( - x  - iO) - JR(x )  + iYi (x  ). 

In a similar fashion, we find 

(5.2) 

:,~(' - 1 ( j3 )  1 f~  = -  dx e Xt Im j3__ ( - x ) 

= -  d x e - X t ( 3 J ~ - J ~ )  J ,  (5.3) 
7C 

b 2 j 

= - ~  -~ d x e - x ' a '  I1 - b J ]  4 (5.4) 

l ( b )31 f )  2bJR- 3 ibJl2 + lbJI 4 
- d x  e .... Jl  (5.5) ~ - ' ( T ~ j 2 ) = ~  ~ ~ l l -ba l  ~ 

Now we are left, apart from the lattice sums in (2.16), with the term T3I  
that has to be inverted. Because we know the structure of J(z)  very well, we 
would like to express s  in terms of J. This can be done in the 
following way [note that d J ( z ) / d z =  - d J ( - x ) / d x ] :  

( b ) 3 l ;~ e x, J _  + x dJ  /dx  5r I (T3I)= ~-~ I r a -  dx 
(1 -- b J _  )3 

=2-b 2-d I m 7  d x e  ~'{(~Z~_b)-~_)3 

.( )} 
-t-~X ( 1 - - b d  )2 

which, via partial integration, yields 

<L~o- 1(T3I) = ~ dx e -X tJ  1 

IbJI (3bJ R - 4) + 3bJ R - 2(b JR) 2 

• Tf-- b---)7 
xt(1 - b JR)) 

-t i] - - b ~  ) (5.6) 



688 van Ve lzen  and Ernst  

With knowledge of JR and J ,  along the branch cut, the expressions 
(5.3)-(5.6) can be integrated numerically. The expressions involved in the 
inversion of the lattice sums in (2.16) are quite lengthy and do not contain 
essential differences with respect to the foregoing and we will not write 
them down here. 

The way in which we perform the integrations is the following. Using a 
Gaussian quadrature formula, we have to calculate the integrands on the 
mesh of points x~ ( 0 , 2 )  prescribed by the method. For each x we 
generate the /~(n, - x - i  0) on the entire lattice; in fact, we obtain con- 
vergence well within ten lattice distances from the origin. In doing this, we 
use the several recursion formulas given in the Appendix. From these 
/~(n, - x - i O )  we calculate the G, J, T, and R, using (3.1), (2.13), (2.10), 
(2.12), and (2.14). Continuing, we evaluate the imaginary parts of the 
analytically obtained summations [cf. (5.2)-(5.6)] and of the summands 
TR3ff(1 Rxx) and 4 2 - TR~v/(1 -Rxy  ). Summing up all these numbers mul- 
tiplied by their appropriate Gaussian weights and performing the lattice 
summations leads to the final result. Note that the "analytical" terms 
(5.2) (5.6) only require the value of/~(n, - x - i 0 )  at the origin n = 0 of the 
lattice. 

The integrands in (5.2)-(5.6) have the same general form e-~'h(x), 
where h(x) is some real-valued function of x. This property enables us to 
find a different representation of these integrals. We first use the identity 

1 _ ~ [ l ] + ~ i 6 ( c o ( q ) _ x )  (5.7) 
co(q) - x - ie co(qi - x 

where e $ 0 and ~ denotes the principal value. We observe that 

j , (x)  =_1 im i .  _o(q_) r c  
d q co(q) - x - i~ d fq co(q) b(co(q) -- x) (5.8) 

Consequently, we find the integral representation 

- dx e-Xtjr(x ) h(x) 
7~ 

1 co(q) dx e Xth(x) 6(co(q) - x) 
d 

= ~ co(q) e ~ (5.9) 

where the second equality follows from the range of co(q): [0, 2]. For the 
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inversion of J, i.e., h-= 1, the result is simply equivalent to the replacement 
of 1/(z + ~o) in (2.13) by its Laplace invert e -~ The advantage of this for- 
mulation is that the integrand in (5.7), at least for the inversion of a single 
factor J, does not contain singularities, which implies more stability in case 
of a numerical evaluation, as opposed to the integrals (5.2) (5.6), which 
still involve the function J(z). The Laplace inversion of J and/~(n) can also 
be expressed in terms of Bessel functions (see Ref. 21, Eq. [9.1.21]). 
However, the inversion of powers of J or/~(n) becomes very complicated, if 
not impossible, using these Bessel functions. 

Now we have two methods, integration schemes, for performing the 
calculations. Both methods, i.e., "contour integration" and "IBZ 
integration," have been programmed, using a Gaussian quadrature 
method. The 1BZ formalism looks more attractive, because the inversion of 
J can be performed more accurately, the integrand [cf. (5.9)] containing 
no singularities. In fact, compared with the "contour" formalism, each 
integrand looks "nicer" by a factor J. However, in the 1BZ integrations we 
have to use much more integration points to obtain an equally dense 
covering of the integration interval, which is two-dimensional for the 
square lattice and three-dimensional for the simple cubic lattice. This leads 
to a large increase in computer time needed, compared with the "contour" 
method. Moreover, we have not been able to apply the 1BZ method to the 
lattice sums in a way that can be handled numerically in an elegant manner 
(e.g., using recursion formulas); it would involve separate calculations for 
each lattice site. 

The various components in two dimensions show discontinuities 
and/or singularities at z = - I  and similarly in three dimensions at 
z = - 4 / 3  and -2 /3  (see Appendix). Therefore, the integration intervals 
have been split up. This is easy for the contour integration, but also 
possible for the 1BZ integration. The reader can verify the latter by 
considering domain and range of the function o(q). 

6. T I M E - D E P E N D E N T  D I F F U S I O N  C O E F F I C I E N T  

Having set up the numerical code for the calculation of the velocity 
autocorrelation function (VACF) for all values of the time t, it is not 
difficult to adjust the code for calculating the time-dependent diffusion 
coefficient as well. This is most easily done after noting that the time 
dependence of the expressions in Section 5 is quite simple. The expressions 
have the form 

f [ f ( x )  + txg(x )]  e -~' dx (6.1) 
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If we integrate this from 0 to t over time according to Eq. (2.1), interchang- 
ing the order of integration, we simply obtain 

I I f (x )  1-e-X'x F- g(x) 1 -e  Xt(l+xt)ldXx (6.2) 

The changes needed are easily implemented in the numerical code. The 
only thing we have to keep in mind is that ~ - I ( T )  contains a delta 
function (b/2d)6(t). This term, when integrated from 0 to t, yields a 
constant contribution -b/2d to the O(c) part of the diffusion coefficient. 

7. R E S U L T S  A N D  D I S C U S S I O N  

In this paper we have given numerical data obtained from the density 
expansion formalism developed for bond percolation models. (z4"5) We have 
calculated the velocity autocorrelation function (VACF) and the time- 
dependent diffusion coefficient using the expressions given by Ernst and 
Van Velthoven (51 and quoted in Section 2 of this paper. More specifically, 
we have performed calculations for the O(c 2) terms of these two quantities, 
c being the concentration of impurity bonds. 

To start with the static diffusion coefficient, the following has 
been done. We calculated the density expansions for several values of 
the conductivity of the impurity bonds a (=  l - b ) .  The low-density 
(small-c) as well as the high-density [ s m a l l - ( l - c ) ]  expansions up to 
second order have been evaluated, i.e., O(c)=l+cqc+~2c 2 and 
~p(c) = a[1 + c~i(1 - c) + c~(1 - c)2]. The coefficients b ( = 1 - a), cq, ~2, ~'1, 
and e~ are tabulated in Table II. Values for the 2D case were already given 
in Ref. 5. For the percolation case in three dimensions the coefficient of c 2 
is very small (-0.0108). Please note that it is smaller than the preliminary 
value of -0.0162 reported earlier. (is) Moreover, it is negative, as in the 2D 
case, and leads to a value of the percolation threshold smaller than the 
EMA value Cp = 2/3, which is the same as follows from the linear c expan- 
sion. Note that Monte Carlo calculations give a percolation concentration 
of Cp ~_ 0.753. (16~ For b=0.99 the O(c 2) is still negative (-0.1489) in the 
2D case, while it is slightly positive (0.001058) for the 3D case. For the 
b values of 0.9 and smaller (higher conductivity of impurity bonds) all 
O(c 2) coefficients are positive. 

The only experimental data (computer simulations) available are for 
the percolation case (b = 1), where the agreement between the results from 
low-density theory and finite-density computer simulations is surprisingly 
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Table I1. Numerical  Values for the Static Diffusion Coeff ic ient  
[cf. Eq. (4 .1) ]  for the Three-Dimensional  Bond Model a 
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b ~1 ~2 b' ~1 ~2 

1.0 -1.5 -0.010807 
0.99 -1.47761 0.001058 -99.0 2.911765 9.354451 
0.9 --1.28571 0.074904 -9.0 2.25 4.504801 
0.8 -1.0909 0.107144 --4.0 1.714286 2.175755 
0.7 -0.91304 0.108634 -2.333 1.3125 1.098392 
0.6 -0.75 0.093873 -1.5 1.0 0.561745 
0.5 -0.60000 0.072114 - 1.0 0.750000 0.282933 
0.4 -0.461538 0.049218 -0.666 0.545455 0.135646 
0.3 -0.333333 0.028828 -0.4286 0.375000 0.058674 
0.2 -0.214286 0.013124 -0.25 0.230769 0.020493 

" We must emphasize that the value -0.0162 reported in Ref. 17 for :q (b = 1.0) was incorrect. 

good. In the site models, (2~ the agreement between theory and simulations 
is poor to O(c) and satisfactory to 0(c2). 

From the data obtained from our density expansion we can construct 
a smooth interpolation between the low- and high-density expansions using 
the technique of Pad6 approximants. As we have six parameters, D(c = 0), 
D ( c = l ) ,  ~1, ~2, a'l, and c~;, available, we can construct the [n,m] 
approximants with n+m=5,  where n and m are the powers of the 
polynomials in numerator and denominator, respectively. The values of 
these polynomials at c = 0 are taken equal to 1, because 0 ( 0 ) =  1. We chose 
to calculate the [4, 1], [3, 2], and [2, 3] Pad6 approximants (see Fig. l). 

The EMA provides values of the diffusion coefficient [cf. Eq. (4.3)] 
that show a smooth transition from the small-c to the large-c domain. The 
slopes of these curves at c = 0 and c = 1 are the same as in the density 
expansion (4.2). In addition, for the 2D case the EMA follows the self- 
duality relation (4.4) and, by consequence, is exact for c = 1 / 2 :  
O(1/2)=D(1/2)/Do=X/-g (see Refs. 5 and 59). 

The same features are found in a renormalization group treatment of 
this 2D problem, (1~ showing that RG calculations yield very accurate 
results for the static transport properties, at least for the 2D square bond 
models. Results for frequency-dependent transport properties, using RG 
calculations, do not seem to be available in the literature. 

For most b values the different Pad6 curves and the EMA curve are 
nearly indistinguishable. The strongest disagreement between the different 
approximants occurs for b values near unity. We took an extreme b value 
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Fig. 1. Static diffusion coefficient. Comparison of different approximations for b =0 .99  and 
b=0 .8 ,  where D(1)/D(O)= 1--b. Rigorous upper and lower bounds (thin, solid lines) high 
and low-density expansions (thin, dashed lines) EMA (heavy, dashed line, merged with Pad6 
curves for b = 0.8), and the [4, 1 ], [3, 2]  and [2, 3] Pad6 approximants (heavy, solid lines). 
(a) 2D, (b) 3D. Parts of (a) and (b) magnified by a factor of five, showing the EMA and Pad6 
curves for b =0.8 .  Left to right: the [2, 3],  [4, 1], and [3, 2]  approximants. 
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of 0.99 to show the differences. In Fig. 1 these results are shown together 
with those for b = 0.8, where everything is in close agreement. We plotted 
the density expansions [-the curves representing the small-c and small- 
( 1 - c )  expansions have been cut off from the right and the left, respec- 
tively], the EMA curves, the Pad6 approximants, and the rigorous bounds 
described by Eqs (4.5)-(4.6). 

It is seen that the density expansions and the EMA curves lie well 
within the bounds. Even the intersections of high- and low-density curves 
(which are not to be considered as a good estimate of 0) obey these 
bounds. For b = 0.8 the Pad6 curves can hardly be distinguished from each 
other and the EMA result. For this reason only the smallest and highest 
Pad6 approximants are plotted; the EMA and the other approximant lie in 
between these curves, as can be seen in Figs. lc and ld, containing 
magnified graphs for b = 0.8. For two dimensions we have the additional 
check that 0(1/2)= ,,fig. The EMA gives this exact value, 0.447, while the 
[-4, 1], [3, 2], and [2, 3] Pad6 approximants give 0.450, 0.440, and 0.445, 
respectively. The [2, 3] approximant could not generally be taken as the 
"best," as could be seen from the b = 0.99 case, where we have (x/-a = 0.1) 
0.194, 0.176, and 0.051, respectively. 

In Fig. 2 we present an overview of the available data for the static dif- 
fusion coefficient for the models with bond disorder, the square lattice in 
Fig. 2a, the simple cubic in Fig. 2b. Instead of displaying the density expan- 
sions and the Pad6 approximations as well, it suffices to show the EMA 
curves, which describe the theory reasonably well over the whole range of 
c values. In Fig. 2b we also include Kirkpatrick's data, (6) obtained from 
simulation of the 3D percolation model (the b =  1 model). (For a com- 
parison with simulations in two dimensions we refer to Ref. 4.) Although 
these data refer to b = 1, they seem to be described in a better way by our 
b = 0.99 curve. Here we recall that EMA gives a poor prediction of the 3D 
percolation threshold and is bound to be in error for densities in the 
vicinity of this percolation threshold (cp ~- 0.753). 

The major part of the effort was put into the calculation of the time- 
dependent diffusion coefficient D(t) and the velocity autocorrelation 
function VACF(t) (cf. Sections 5 and 6 of this paper). The calculations 
have been performed for several different values of the parameter b. The 
most interesting behavior is, as can be expected, shown by the percolation 
case b = 1. The results for this case are shown in Figs. 3a and 4a (diffusion 
coefficient) and Figs. 3b and 4b (VACF). The results for other b values are 
included in Tables III and IV. We considered 90 time points, of which 
every third is given in the tables. We plotted and tabulated the quantities 
C~l(t)[ =cq( t )+  b, to separate out the Enskog part], e2(t), 3~(t), and 32(t) 
as they appear in 
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Fig. 3. (a) Time dependence of D(t) contributions in 2D bond percolation (b = 1) to O(c) 
and 0(c2), as defined in Eq. (7.1), The dashed line represents the EMA part of %(t). Cusps 
indicate changes in sign. (b) Contributions to the velocity autocorrelation function (VACF) 
for 2D bond percolation ( b =  1) to O(c) and O(c 2) as defined in Eq. (7.1). The EMA 
contribution to fl2(t) is represented by a dashed line. 
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for 3D bond percolation ( b = l )  to O(c) and O(c 2) as defined in Eq. (7.1). The EMA 
contribution to fl2(t) is represented by a dashed line. 
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1 
D(t)  = ~ a  [1 - be + al( t )  c + ~2(t) c ~] 

1 
~(t )  = ~ [(1 - be) ~ + (t) + /L(~ )  c +/~2(t)  c 2] 

(7.1) 

The reason for doing so is to facilitate the comparison of the static and 
time-dependent diffusion coefficients here and all present results with those 
obtained in the context of the effective medium theory. 

The EMA contributions to a2(t) and fl2(t) (indicated by dashed lines 
in Figs. 3 and 4) are missing the contributions from the lattice sums in 
Eq. (2.16). These lattice sums account for dynamical events in which the 
RW crosses three or more times between two impurities. For  more details 
we refer elsewhere. (22~ 

The use of logarithmic scales forced us to plot the absolute values of 
the quantities; thus, each zero appears as a cusp in the graph; the signs of 
the quantities are indicated in the figures. For the diffusion coefficient we 
exclude the Enskog or high-frequency part bc/2d from the linear term to 
prevent the (log-log) graph from becoming virtually constant-valued. 

The large-z and small-z behavior of q~(z) [Eq. 2.16] can be studied 
analytically (see also Ref. 13), yielding the short-time and long-time 
asymptotics, respectively. We investigated the time scales on which the dif- 
ferent terms in (2.16) assume their long-time asymptotic behavior. To do 
so, we start from the leading and subleading long-time tails of (2P.-iJ)(t) 
[cf. Eq. (2.13)]. After some lengthy, but straightforward calculations these 
yield the tails of the terms T, TzJ, T3j 2, and T3L 

We observe that in the 2D model the leading and subleading long-time 
tails describe the term T(t) within 10% (resp. 1%) accuracy for times 
greater than about 15 (80), the term T2J(t) from t =  26 (120) on and the 
other two from t = 40 (175) on. For the 3D model these numbers are t = 20 
(57) for T, 25 (80) for TzJ, and 35 (100) for the terms cubic in T. The 
difference with the 2D case shows the slow logarithmic convergence in two 
dimensions. 

These data (in fact, the dependence on the power of T) can be 
understood from the number of ring collisions (return visits to the same 
scatterer) involved in each of these terms. The powers of T account for the 
number of visits of the RW to a scatterer. In the term T there is only one 
scatterer involved, since it is the linear c term; for T2J the RW visits first 
scatterer 1 and then scatterer 2 and subsequently moves away from the pair 
of scatterers. For  the other two terms T3j 2 and T3I the RW returns to the 
first scatterer before hopping away. Only after each individual ring collision 
has reached its asymptotic form can the VACF assume its asymptotic 
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behavior. As the lattice sums involve more crossings between the two 
scatterers, we expect that the asymptotic regime for these contributions will 
be reached at a still later time. 

Also for the lattice sum contributions we can calculate the dominant 
long-time behavior analytically. This is done by formally taking the 
derivative of the lattice sums in (2.16) with respect to J. The long-time tail 
is then expressed in that of J (J appears through T and R = TG, and the 
nonanalytic part of Gxx for small z is equal to 6Gxx = 2d6J, and ~G~ = 0; 
see Ref. 13). 

Subsequently, the expressions can be evaluated numerically along the 
same lines as the static diffusion coefficient (cf. Section 4 of this paper). For 
the percolation case b = 1 we find Z'xx= 0.21360t -2 and Z'xy= 0.06832t 2 
for d = 2  and Sxx =0.01775t -5/2 and Sxy=0.002103t 5/2 for the 3D case, 
as these terms appear in (2.16), i.e., before taking out the factor of 1/2d [cf. 
Eq. (7.1)]. The deviation from these asymptotics is within 20% for times 
greater than t = 215 for both sums in two dimensions and is about 14% for 
t = 300. In 3D the sum Z'xx has approached the asymptotic within 20% for 
t =  160, the Xxy lattice sum for t =  250. The t =  300 deviations are 13.6% 
and 17.6%, respectively. The difference between xx and xy reflects that Z'.~ x 
is mainly determined by R 3 and Xxy by R 4 (we recall that R ~ T). This 
systematic difference is not observed for two dimensions; this might be 
explained by the strong influence of the subleading tail in that case. 

For  the lattice sums, the subleading long-time tails have not been 
calculated. This would be a very elaborate calculation because one needs to 
extract analytically the O(z 2 In 2 z) and O(z 2 In z) terms from the lattice 
sums and next evaluate them numerically. Because this analysis involves 
the O(z)part of G~x(n, z) [essentially the integral ~q co 2 e x p ( - i n q ) ]  this 
numerical evaluation will be most easily performed using recursion 
formulas for this term that involve next nearest neighbor sites, where the 
static diffusion coefficient and the dominant tail of the lattice sums were 
calculated using nearest neighbor recursion relations (see Sections 3 and 4 
and the Appendix). This indicates the amount of the work that has to be 
done. 

The results for the diffusion coefficient can be compared with the 
results for the static diffusion coefficient (Section 4), because D(oo) should 
be equal to the static D. As we do not have results for t greater than 300, 
we compare the t = 300 values of Table III with the static values (Table II). 
The most difficult part to calculate is that coming from the lattice sums, 
which are the only contributions for the O(c 2) term at b = 1. We looked in 
detail at the results for different values of b. Here, it suffices to discuss the 
percolation case. For  three dimensions we clearly have approached the 
asymptotic regime within 1%. For two dimensions the difference can be 
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explained by the finiteness of t = 300. Considering the total lattice sum 
contribution, we fitted the form 

Z( t )  = 2;(oo) + 0.28192t 111 -i- Bt -1 ln(t /z)]  

to the data from t ~ 150 to 300, yielding reasonable values of B and ~: 40 
and 60, respectively. 

As an illustration, we plot in Fig. 5 the total contribution to the time- 
dependent diffusion coefficient D(t)  in (7.1) at some finite values of the 
impurity concentration c. For  the 2D bond model studied here computer 
simulations have been performed by Brey, (23) leading to results that agree, 
within the statistical errors, with our calculations. Note that D axis in 
Fig. 5 is linear; we have taken out the Enskog part and divided the remain- 
der by c, resulting in ~ l ( t )+  e2(t)c. The values for the concentration are 
taken equal to 0.01, 0.20, and 0.40. We recall that at c=0 .40  the density 
expansion is not expected to be valid in all detail. 

To conclude, we note that for negative b values, corresponding to 
impurity bonds with a conductivity greater than that of the host lattice, it 
is also possible to calculate the first-order term (T). In that case, in 
addition to the branch cut from - 2  to 0, we have to take into account a 
pole at z o, given by 

1 - bJ(zo) = 0 

From the structure of J, one easily concludes that this pole lies on the real 
axis left from - 2 .  For  d =  2, the pole is present for any b < 0, while for 
d =  3, b has to be less than -1.4758, as J3(z) (for z <  - 2 )  lies between 
-0 .6776 and 0. 

For  the O(c 2) terms we have not been able to obtain good results for 
negative b values. These are found to cause numerical instabilities. The 
results for O(c) are reported in Ref. t3 for the 2D case. As the O(c) results 
for three dimensions do not lead to essentially different features, we will not 
discuss them in this paper, which mainly considers second-order density 
effects. 

Finally, we checked the accuracy of the numerical results by means of 
the relation (2.17), valid for the percolation case. As for all other b values, 
we calculated the terms TzJ, T3j,  and T 3 j  2 separately and checked if their 
sum (using the appropriate weight factors) would give zero. The terms 
have been calculated independently. The result of the summation is a num- 
ber that varies from 10 -7 to 10 11 for small to large (near 300) values of 
the time. The separate terms have magnitudes of the order of 10-1 to 10 -6, 
thus having a rough five-digit accuracy over the whole time interval. 
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Fig. 5. Contributions to time-dependent diffusion coefficient D(t) in Eq. (7.1). Upper part 
has the same legend as Fig. 3a.; lower part shows c~(t) + cc~2(t ) for c = 0.01, 0.20, and 0.40 
(from left to right). (a) 2D, (b) 3D. 
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A P P E N D I X  

In this Appendix we report the steps needed to calculate the/~d(n, z) 
defined by (3.2) for the whole lattice of n vectors. In doing so, we rely 
heavily on Morita. ~ls) 

First,/~2(0, 0, z) and/~2(1, 1, z) are given by 

~ ( -5-T2f 7 (1.1) 

-2( l  +z)2 Ef(1 l+z)2]l (A.2) 

using the definitions of the complete elliptic integrals of the first (K) and 
second (E) kinds as defined by Abramowitz and Stegun. ~211 From these 
expressions it is clear that for z = - 1  we have a singularity, as K diverges 
logarithmically for argument near unity. In addition, the multiplicative fac- 
tor in (A.1) differs in sign for z greater, resp. smaller, than - 1, leading to a 
change from - o v  to + ~ for the real part; for the imaginary part this 
change in sign is canceled by complex conjugation of the argument as z 
goes through - 1 .  Clearly, the same comments apply to the terms in (A.2) 
containing K. This kind of discontinuous behavior is shown by/~2 for all 
lattice sites, as follows from the recurrence relations to be discussed in the 
following. Physically they can be seen as the analogue of the Van Hove 
singularities appearing in phonon spectra of harmonic crystals. ~24) There 
the saddle points qs in the parametrized surface co(q) (q~ 1BZ) [cf. 
Eq. (2.9)] give the location of the singularities in the spectrum: co(qs)= 1 
for 2D; cO(qs)= 2/3 or 4/3 for 3D. 

Next, the/~z(l, l, z) follow from [see Morita, ~15) Eq. (3.8)] 

4l 
/~2(l+ 1, l +  1, z )=  2-T'~ [2(1 + z )  2 -  1]/~:(l, l, z) 

2 l -  1 
- - -  ~ 2 ( 1 -  1, l --  1, z) 

2/+ 1 

Proceeding, we have, using (3.3a), 

/~2(1, 0, z ) =  (1 +z)/~2(0, 0, z ) -  1 

and 

/~2(l+ 1, l, z) = 2(1 + z) ~2(1, l, z ) -  fi2(l, l -  1, z) 
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which is used to calculate/52(/, m, z) on the line m = l -  1 from 0 to L Next, 
we calculate fi2(/, m, z) on the line (l, 1 ) - (l, l), using 

/52(l+ 1, m, z) = 4(1 +z)/52(/, m, z ) -  f i2( l -  1, m, z) 

- / 5 2 ( l , m + l , z ) - f i z ( l , m - l , z )  for 0 < m < /  

Finally, on the axes 

/52(l+ 1, O, z ) = 4 ( 1  +z)/52(/, O, z ) - / 5 2 ( l -  1, O, z)-2/52(l ,  1, z) 

The values of/52 in the other seven half-quadrants follow by symmetry. 
From these data for /52(l ,m,z) it is possible to calculate the 

/53(l, m, n, z) for the, say, n = 0 plane, using the expression (4.4) in the body 
of the paper. In essence this is an integration of the/52(l, m, z) over a part of 
the real axis. A closer look at Eq. (4.4) shows that now the "Van Hove" 
singularities appear at z = - 4 / 3  and -2 /3 ,  and are weaker, the latter 
because the logarithmic behavior of the two-dimensional lattice functions is 
integrated. 

Once we have/53(/, m, 0, z), the whole 3D lattice follows by 

/53(l, m, 1, z) = 6(1 +z)/53(l, m, 0, z ) -  63t03m0 

--/53(l+ 1, m, O, z) -- /53(/-- l, m, O, z) 

- / 5 3 ( l ,  m + 1, 0, z )  - / 5 3 ( / ,  m - 1, 0, z )  

and, for n >~ 1, 

/53(l, m, n + 1, z) = 6(1 + z)/53(l, m, n, z) -/53(l, m, n - 1, z) 

- /53(l + l, m, n, z ) - 1 5 3 ( l -  l, m, n, z) 

- / 5 3 ( / ,  m + 1, n, z)  - / 5 3 ( / ,  m - 1, n, z )  

The/53(n, z) for the remaining regions of the lattice follow by symmetry. 
The expressions (A.1) and (A.2) are valid for arbitrary complex value 

of z. However, for z or k 2 just below the branch cut it is more convenient 
to use the analytic continuations of the elliptic integrals, which imply the 
replacement of K(1/k 2) and E(1/k 2) by ~5) 

K(1/1, 2 ) = ~, [ K ( k  2) + iK(1  - 1,2)] 

E(1/k 2) = 1/k[E(k  2) - iE(1 -- k 2) - (1 - k 2) K(k 2) + ik2K(l - k2)] 

For the evaluation of the/53(n, z), we have to divide the integration in (3.4) 
into several intervals, where different expressions for the/52(n, z) have to be 
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used. (25) From the definition of the complete elliptic integrals it is clear that 
they obey the symmetry relations 

K(k*2)= K*(k2), K ( ( - k R  + ik,)2)= K*((kR + ik,) 2) 

These lead to the symmetry relations for the real and imaginary parts of 
p(0, z), for d =  2, 3, 

PR(0, - l - s - ie) = -PR(0,  - 1 + s - ie) 

~ , ( 0 ,  - 1 - s -  i ~ )  = p , ( 0 ,  - 1 + s -  i ~ )  

Using these relations in combination with the recursion formulas, we 
obtain insight into how to apply the subtraction technique to the 
calculation of/O3(n, z) for arbitrary lattice site n. 

For  illustration we investigate the structure of J(z) in more detail. J(z) 
follows from the previous results by writing 

l fq  ~o(q) 1 Zfq 1 
J(Z)=d z+~o(q)--2-ar z+~o(q) 

1 =? [1-z~(0, z)] 

The 2D and 3D cases are plotted in Figs. 6a and 6b, respectively, where the 
dashed lines represent the imaginary parts. 
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